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               ABSTRACT 

In this paper, a direct boundary element method is applied for computing potential flow around a 
Prolate Spheroid using quadrilateral elements. The computed results for flow velocities are compared 
with analytical results. The accuracy of the computed results is quite good. 
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INTRODUCTION  
 
Over the last twenty years, the term boundary 
element method has become more popular. 
The boundary element method is a numerical 
technique and hence it is an important subject 
of research amongst the numerically 
community. This method is derived through 
the discretisation of an integral equation that is 
mathematically equivalent to the original 
partial differential equation. It is easier to use 
and more efficient, cost effective and time  
 
 

saving, than the other competing 
computational methods i.e. finite difference 
and finite element methods. The boundary 
element method has a wide range of 
applications in fluid flow problems. 
FLOW PAST A PROLATE SPHEROID 
 
Let a Prolate spheroid be generated by rotating 
an ellipse of semi – major axis  a  and semi – 
minor axis  b  about its major axis and let a 
uniform stream of velocity  U  be in the 
positive direction of z – axis as shown in figure 1 . 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1:  The Flow Past a Prolate Spheroid 
 
The Prolate spheroid is defined by the 
transformation  
z + i r  =  c cosh ζ  =  c cosh ( ξ + i η ) 
 =  c cosh ξ cosh ( i η ) + c sinh ξ sinh (i η) 
 =  c cosh ξ cos η + i c sinh ξ sin η  
_______________________ 
* Correspondence to:  Muhammad Mushtaq, 
  Assistant Professor, Department of Mathematics 
  University of Engineering & Technology, Lahore 
 
 

Comparison of real and imaginary parts gives 
    z =  c cosh ξ cos η ,   r  =  c sinh ξ sin η (1) 
Therefore the curve  ξ  =  ξ 0  is an ellipse in 
the   z r – plane whose semi – axes are  

 



a  =  c cosh ξ 0 
 

b  =  c sinh ξ 0

    (2) 

and so   ξ  =  ξ 0   is a Prolate spheroid . 
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 The stream function  ψ  for a Prolate 
spheroid moving in the negative direction of 
the z – axis with velocity  U  is given by 
ψ =  

1
2 U b 2 



 cosh ξ + sinh 2 ξ ln tanh 

ξ
2  sin 2 η

a
c + 

b 2

c 2 ln 
a + b – c
a + b + c

  

 (3) 
Also , the stream function  ψ  for the uniform 
stream with velocity  U , in the positive 
direction of z – axis is given by 

 ψ  =  – 
1
2 U r 2  

Therefore the stream function  ψ  for the 
streaming motion past a fixed Prolate spheroid 
in the positive direction of the z – axis 
becomes 
ψ  =  – 12 U r 2  

 + 

1
2 U b 2 



 cosh ξ + sinh 2 ξ ln tanh 

ξ
2  sin 2 η

a
c + 

b 2

c 2 ln 
a + b – c
a + b + c

  

  (4) 
which on using (1) becomes 

ψ  =  – 
1
2 U c 2 sinh 2 ξ sin 2 η  

+ 

1
2 U b 2 



 cosh ξ + sinh 2 ξ ln tanh 

ξ
2  sin 2 η

a
c + 

b 2

c 2 ln 
a + b – c
a + b + c

  

 (5) 
To determine the formula for the velocity , the 
following relation is used 

V 2 r 2 f ′ ( ζ ) 
–
f  ′ ( –ζ )  =  



 

∂ ψ
∂ ξ  

 2

 + 



 

∂ ψ
∂ η 

 2

  

 (6) 
Since   f ( ζ )  =  c cosh ( ζ ) 
f ′ ( ζ )  =  c sinh ( ζ )  =  c sinh ( ξ + i η ) , 
–
f  ′ ( –ζ )  =  c sinh ( ξ – i η )  

and f ′ ( ζ ) 
–
f  ′ ( 

–
ζ )  = 

c 2 ( sinh 2 ξ cos 2 η + cosh 2 ξ sin 2 η ) (7) 
When   ξ  =  ξ 0 ,  then from (1) , (6) and (7) 
V 2 c 4 sinh 2 ξ 0 sin 2 η  
 ( sinh 2 ξ 0 cos 2 η + cosh 2 ξ 0 sin 2 η ) 

 =  



 

∂ ψ
∂ ξ  

 2

ξ = ξ 0

 + 



 

∂ ψ
∂ η 

 2

ξ = ξ 0

  

  (8) 
Now from (5) , we get 
  =  – U c 2 sinh ξ 0 cosh ξ 0 sin 2 η  

+
U b 2 



sinh ξ 0 + sinh ξ 0 cosh ξ 0 ln tanh 

ξ 0
2  sin 2 η

a
c + 

b 2

c 2 ln 
a + b – c
a + b + c

 

  (9) 
Since for a Prolate spheroid      
 a = c cosh ξ 0 ,   b = c sinh ξ 0  (10) 

But  tanh 
ξ 0
2   =  

a + b – c
a + b + c  =  

b
a + c  (11) 

From (9) , (10) , and (11) , we get 





 

∂ ψ
∂ ξ  

ξ = ξ 0

  = U sin 2 η 











 – ab + 

b 3

c  + 
ab 3

c 2  ln 
b

a + c
a
c + 

b 2

c 2 ln 
b

a + c

   

 = U sin 2 η 







 

– cb
a
c + 

b 2

c 2 ln 
b

a + c

   (12) 

and from (5) , (10) , and (11) , we obtain  

 



 

∂ ψ
∂ η 

ξ = ξ 0

  =  0 (13) 

Using (12) and (13) , (8) becomes 
V 2 c 4 sinh 2 ξ 0 sin 2 η  
[ sinh 2 ξ 0 cos 2 η + cosh 2 ξ 0 sin 2 η ]   

 =  
U 2 b 2 c 2 sin 4 η





 

a
c + 

b 2

c 2 ln 
b

a + c 
 2  (14) 

But from (1) and (2) , we get      

 
z
a  =  cos η ,     

r
b  =  sin η  (15) 

Using (10) , (15) in (14) , we have 

V 2  =  
U 2 r 2 a 2 c 2





 

a
c + 

b 2

c 2 ln 
b

a + c 
 2

 ( b 4 z 2 + a 4 r 2 )
  

  (16) 
Taking square root of (16) , the magnitude of 
exact velocity distribution over the boundary 
of a Prolate spheroid is given by 

V  =  
U a c r





 

a
c + 

b 2

c 2 ln 
b

a + c  b 4 z 2 + a 4 r 2
  (17) 

BOUNDARY CONDITIONS 
The boundary condition to be satisfied over the 
surface of a Prolate spheroid is 

 
∂ φp.s

∂ n   =  U ( n̂ . k̂ )  (18) 

where  φp.s  is the perturbation velocity 

potential of a Prolate spheroid and  n̂  is the 
outward drawn unit normal to the surface of a 
Prolate spheroid 
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The equation of the boundary of the Prolate 
spheroid 

 
z2

a2 + 
y2

b2 + 
x2

b2  =  1 

Let   f (x, y, z)  =  
z2

a2 + 
y2

b2 + 
x2

b2  – 1 

Then  ∇ f  =  
2 x
b2  î  + 

2 y
b2  ĵ  + 

2 z
a2  k̂  

Therefore    

n̂  =  
∇ f

| ∇ f |  =  

2 x
b2  î  + 

2 y
b2  ĵ  + 

2 z
a2  k̂





 

2 z
a2  

2

 + 



 

2 y
b2  

2

 + 



 

2 x
b2  

2  

Thus  n̂ . k̂  =  

2 z
a2





 

2 z
a2  

2

 + 



 

2 y
b2  

2

 + 



 

2 x
b2  

2  

Therefore, the boundary condition in (18) takes 
the form 

 
∂ φp.s
∂ n   = U 

z
a2

b4 z2 + a4 y2 + a4 x2

b2 a2

  

  = 
z b2

b4 z2 + a4 (y2 + x2)
  

                              (Taking  U  =  1) (19) 
Equation (19) is the boundary condition which 
must be satisfied over the boundary of a 
Prolate spheroid. 
DISCRETIZATION OF ELEMENTS 
 The direct boundary element method is 
applied to calculate the potential flow solution 
around the Prolate spheroid for which the 
analytical solution is available. 
Consider the surface of the sphere in one 
octant to be divided into three quadrilateral 
elements by joining the centroid of the surface 
with the mid points of the curves in the 
coordinate planes as shown in figure 2 . 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2:  Surface of the sphere divided into three 

quadrilateral elements 

Then each element is divided further into four 
elements by joining the centroid of that 
element with the mid–point of each side of the 
element. Thus one octant of the surface of the 
sphere is divided into 12 elements and the 
whole surface of the body is divided into 96 
boundary elements. The above mentioned 
method is adopted in order to produce a 
uniform distribution of element over the 
surface of the body.  
Figure 3 shows the method for finding the 
coordinate (xp, yp, zp) of any point P on the 
surface of the sphere. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3: The method of finding the coordinate  
(xp,yp,zp) of any point P on the surface of the sphere 
From figures 3 we have the following equation 

 | r p|  =  1 

 r p . r 1  =  r p . r 2  

 ( r 1 x r 2) . r p  =  0 
or in cartesian form 

 x
2
p + y

2
p + z

2
p  =  1 

 xp (x1 – x2) + yp (y1 – y2) + zp (z1 – z2)  =  0 
 xp (y1 z2 – z1 y2) + yp (x2 z1 – x1 z2) +  
 zp (x1 y2 – x2 y1)  =  0 
As the body possesses planes of symmetry, this 
fact may be used in the input to the program 
and only the non–redundant portion need be 
specified by input points. The other portions 
are automatically taken into account. The 
planes of symmetry are taken to be the 
coordinate planes of the reference coordinate 
system. The advantage of the use of symmetry 
is that it reduces the order of the resulting 
system of equations and consequently reduces 
the computing time in running a program. As a 
sphere is symmetric with respect to all three 
coordinate planes of the reference coordinate 
system, only one eighth of the body surface 
need be specified by the input points, while the 
other seven–eighth can be accounted for by 
symmetry. 
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The Prolate spheroids of fineness ratios 2 and 
10 are discretised into 24and 96 boundary 
elements and the computed velocity 
distributions are compared with analytical 
solutions for the Prolate spheroids. In both 
cases of spheroids, the input points are 
distributed on the surface of a sphere and the x 
and y-coordinates of these points are then 
divided by the fineness ratios to generate the 

points for the Prolate spheroids. The number of 
boundary elements used to obtain the 
computed velocity distribution are the same as 
are used for the sphere. 
The calculated velocity distributions are 
compared with analytical solutions for the 
Prolate spheroid of fineness ratios 2 and 10 
using Fortran programming. 
 

 

Table 1:  Comparison of the computed velocities with exact velocity over the surface of a Prolate 
spheroid with fineness ratio 2 using 24 boundary elements. 

ELEMENT XM YM ZM R = 
(YM)2 + (ZM)2  

COMPUTED 
VELOCITY 

EXACT 
VELOCITY 

1 -.321E+00 -.374E+00 .161E+00 .40696E+00 .11589E+01 .11871E+01 
2 -.748E+00 -.161E+00 .161E+00 .22706E+00 .76132E+00 .93409E+00 
3 -.748E+00 .161E+00 .161E+00 .22706E+00 .76132E+00 .93409E+00 
4 -.321E+00 .374E+00 .161E+00 .40696E+00 .11589E+01 .11871E+01 
5 .321E+00 .374E+00 .161E+00 .40696E+00 .11589E+01 .11871E+01 
6 .748E+00 .161E+00 .161E+00 .22706E+00 .76132E+00 .93409E+00 
7 .748E+00 -.161E+00 .161E+00 .22706E+00 .76132E+00 .93409E+00 
8 .321E+00 -.374E+00 .161E+00 .40696E+00 .11589E+01 .11871E+01 
9 -.321E+00 -.161E+00 .374E+00 .40696E+00 .11589E+01 .11871E+01 
10 -.321E+00 .161E+00 .374E+00 .40696E+00 .11589E+01 .11871E+01 
11 .321E+00 .161E+00 .374E+00 .40696E+00 .11589E+01 .11871E+01 
12 .321E+00 -.161E+00 .374E+00 .40696E+00 .11589E+01 .11871E+01 

 
 
 Graph. 1  Comparison of computed and analytical velocity distributions over the surface of a 
Prolate spheroid using 24 boundary elements with fineness ratio 2 
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Table 2:  Comparison of the computed velocities with exact velocity over the surface of a Prolate 
spheroid with fineness ratio 10 using 24 elements. 

 
ELEMENT XM YM ZM R = 

(YM)2 + (ZM)2  
COMPUTED 
VELOCITY 

EXACT 
VELOCITY 

1 -.321E+00 -.748E-01 .321E-01 .81391E-01 .10311E+01 .10199E+01 
2 -.748E+00 -.321E-01 .321E-01 .45412E-01 .98097E+00 .10071E+01 
3 -.748E+00 .321E-01 .321E-01 .45412E-01 .98097E+00 .10071E+01 
4 -.321E+00 .748E-01 .321E-01 .81391E-01 .10311E+01 .10199E+01 
5 .321E+00 .748E-01 .321E-01 .81391E-01 .10311E+01 .10199E+01 
6 .748E+00 .321E-01 .321E-01 .45412E-01 .98097E+00 .10071E+01 
7 .748E+00 -.321E-01 .321E-01 .45412E-01 .98097E+00 .10071E+01 
8 .321E+00 -.748E-01 .321E-01 .81391E-01 .10311E+01 .10199E+01 
9 -.321E+00 -.321E-01 .748E-01 .81391E-01 .10311E+01 .10199E+01 
10 -.321E+00 .321E-01 .748E-01 .81391E-01 .10311E+01 .10199E+01 
11 .321E+00 .321E-01 .748E-01 .81391E-01 .10311E+01 .10199E+01 
12 .321E+00 -.321E-01 .748E-01 .81391E-01 .10311E+01 .10199E+01 

 
Graph. 2:  Comparison of computed and analytical velocity distributions over the surface of a 
Prolate spheroid using 24 boundary elements with fineness ratio 10 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: Comparison of the computed velocities with exact velocity over the surface of a Prolate 
spheroid with fineness ratio 2 using 96 boundary elements. 

 
ELEMENT XM YM ZM R = 

(YM)2 + (ZM)2  
COMPUTED 
VELOCITY 

EXACT 
VELOCITY 

1 -.177E+00 -.467E+00 .885E-01 .47529E+00 .11975E+01 .12048E+01 
2 -.522E+00 -.399E+00 .785E-01 .40676E+00 .11385E+01 .11521E+01 
3 -.798E+00 -.261E+00 .785E-01 .27264E+00 .93605E+00 .97640E+00 
4 -.934E+00 -.885E-01 .885E-01 .12511E+00 .47752E+00 .57150E+00 
5 -.934E+00 .885E-01 .885E-01 .12511E+00 .47752E+00 .57150E+00 
6 -.798E+00 .261E+00 .785E-01 .27264E+00 .93605E+00 .97640E+00 
7 -.522E+00 .399E+00 .785E-01 .40676E+00 .11385E+01 .11521E+01 
8 -.177E+00 .467E+00 .885E-01 .47529E+00 .11975E+01 .12048E+01 
9 .177E+00 .467E+00 .885E-01 .47529E+00 .11975E+01 .12048E+01 
10 .522E+00 .399E+00 .785E-01 .40676E+00 .11385E+01 .11521E+01 
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11 .798E+00 .261E+00 .785E-01 .27264E+00 .93605E+00 .97640E+00 
12 .934E+00 .885E-01 .885E-01 .12511E+00 .47752E+00 .57150E+00 
13 .934E+00 -.885E-01 .885E-01 .12511E+00 .47752E+00 .57150E+00 
14 .798E+00 -.261E+00 .785E-01 .27264E+00 .93605E+00 .97640E+00 
15 .522E+00 -.399E+00 .785E-01 .40676E+00 .11385E+01 .11521E+01 
16 .177E+00 -.467E+00 .885E-01 .47529E+00 .11975E+01 .12048E+01 
17 -.157E+00 -.399E+00 .261E+00 .47693E+00 .11977E+01 .12059E+01 
18 -.470E+00 -.352E+00 .235E+00 .42289E+00 .11622E+01 .11659E+01 
19 -.703E+00 -.235E+00 .235E+00 .33220E+00 .10100E+01 .10695E+01 
20 -.798E+00 -.785E-01 .261E+00 .27264E+00 .93605E+00 .97640E+00 
21 -.798E+00 .785E-01 .261E+00 .27264E+00 .93605E+00 .97640E+00 
22 -.703E+00 .235E+00 .235E+00 .33220E+00 .10100E+01 .10695E+01 
23 -.470E+00 .352E+00 .235E+00 .42289E+00 .11622E+01 .11659E+01 
24 -.157E+00 .399E+00 .261E+00 .47693E+00 .11977E+01 .12059E+01 
25 .157E+00 .399E+00 .261E+00 .47693E+00 .11977E+01 .12059E+01 
26 .470E+00 .352E+00 .235E+00 .42289E+00 .11622E+01 .11659E+01 
27 .703E+00 .235E+00 .235E+00 .33220E+00 .10100E+01 .10695E+01 
28 .798E+00 .785E-01 .261E+00 .27264E+00 .93605E+00 .97640E+00 
29 .798E+00 -.785E-01 .261E+00 .27264E+00 .93605E+00 .97640E+00 
30 .703E+00 -.235E+00 .235E+00 .33220E+00 .10100E+01 .10695E+01 
31 .470E+00 -.352E+00 .235E+00 .42289E+00 .11622E+01 .11659E+01 
32 .157E+00 -.399E+00 .261E+00 .47693E+00 .11977E+01 .12059E+01 
33 -.157E+00 -.261E+00 .399E+00 .47693E+00 .11977E+01 .12059E+01 
34 -.470E+00 -.235E+00 .352E+00 .42289E+00 .11622E+01 .11659E+01 
35 -.522E+00 -.785E-01 .399E+00 .40676E+00 .11385E+01 .11521E+01 
36 -.522E+00 .785E-01 .399E+00 .40676E+00 .11385E+01 .11521E+01 
37 -.470E+00 .235E+00 .352E+00 .42289E+00 .11622E+01 .11659E+01 
38 -.157E+00 .261E+00 .399E+00 .47693E+00 .11977E+01 .12059E+01 
39 .157E+00 .261E+00 .399E+00 .47693E+00 .11977E+01 .12059E+01 
40 .470E+00 .235E+00 .352E+00 .42289E+00 .11622E+01 .11659E+01 
41 .522E+00 .785E-01 .399E+00 .40676E+00 .11385E+01 .11521E+01 
42 .522E+00 -.785E-01 .399E+00 .40676E+00 .11385E+01 .11521E+01 
43 .470E+00 -.235E+00 .352E+00 .42289E+00 .11622E+01 .11659E+01 
44 .157E+00 -.261E+00 .399E+00 .47693E+00 .11977E+01 .12059E+01 
45 -.177E+00 -.885E-01 .467E+00 .47529E+00 .11975E+01 .12048E+01 
46 -.177E+00 .885E-01 .467E+00 .47529E+00 .11975E+01 .12048E+01 
47 .177E+00 .885E-01 .467E+00 .47529E+00 .11975E+01 .12048E+01 
48 .177E+00 -.885E-01 .467E+00 .47529E+00 .11975E+01 .12048E+01 

 
Graph. 3:  Comparison of computed and analytical velocity distributions over the surface of a 

Prolate spheroid using 96 boundary elements with fineness ratio 2 
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Table 4: Comparison of the computed velocities with exact velocity over the surface of a Prolate 

spheroid with fineness ratio 10 using 96 boundary elements. 
ELEMENT XM YM ZM R = 

(YM)2 + (ZM)2  
COMPUTED 
VELOCITY 

EXACT 
VELOCITY 

1 -.177E+00 -.934E-01 .177E-01 .95057E-01 .10210E+01 .10205E+01 
2 -.522E+00 -.798E-01 .157E-01 .81353E-01 .10186E+01 .10186E+01 
3 -.798E+00 -.522E-01 .157E-01 .54527E-01 .10151E+01 .10099E+01 
4 -.934E+00 -.177E-01 .177E-01 .25022E-01 .89600E+00 .95627E+00 
5 -.934E+00 .177E-01 .177E-01 .25022E-01 .89600E+00 .95627E+00 
6 -.798E+00 .522E-01 .157E-01 .54527E-01 .10151E+01 .10099E+01 
7 -.522E+00 .798E-01 .157E-01 .81353E-01 .10186E+01 .10186E+01 
8 -.177E+00 .934E-01 .177E-01 .95057E-01 .10210E+01 .10205E+01 
9 .177E+00 .934E-01 .177E-01 .95057E-01 .10210E+01 .10205E+01 

10 .522E+00 .798E-01 .157E-01 .81353E-01 .10186E+01 .10186E+01 
11 .798E+00 .522E-01 .157E-01 .54527E-01 .10151E+01 .10099E+01 
12 .934E+00 .177E-01 .177E-01 .25022E-01 .89600E+00 .95627E+00 
13 .934E+00 -.177E-01 .177E-01 .25022E-01 .89600E+00 .95627E+00 
14 .798E+00 -.522E-01 .157E-01 .54527E-01 .10151E+01 .10099E+01 
15 .522E+00 -.798E-01 .157E-01 .81353E-01 .10186E+01 .10186E+01 
16 .177E+00 -.934E-01 .177E-01 .95057E-01 .10210E+01 .10205E+01 
17 -.157E+00 -.798E-01 .522E-01 .95386E-01 .10203E+01 .10206E+01 
18 -.470E+00 -.703E-01 .470E-01 .84578E-01 .10211E+01 .10191E+01 
19 -.703E+00 -.470E-01 .470E-01 .66440E-01 .10135E+01 .10150E+01 
20 -.798E+00 -.157E-01 .522E-01 .54527E-01 .10151E+01 .10099E+01 
21 -.798E+00 .157E-01 .522E-01 .54527E-01 .10151E+01 .10099E+01 
22 -.703E+00 .470E-01 .470E-01 .66440E-01 .10135E+01 .10150E+01 
23 -.470E+00 .703E-01 .470E-01 .84578E-01 .10211E+01 .10191E+01 
24 -.157E+00 .798E-01 .522E-01 .95386E-01 .10203E+01 .10206E+01 
25 .157E+00 .798E-01 .522E-01 .95386E-01 .10203E+01 .10206E+01 
26 .470E+00 .703E-01 .470E-01 .84578E-01 .10211E+01 .10191E+01 
27 .703E+00 .470E-01 .470E-01 .66440E-01 .10135E+01 .10150E+01 
28 .798E+00 .157E-01 .522E-01 .54527E-01 .10151E+01 .10099E+01 
29 .798E+00 -.157E-01 .522E-01 .54527E-01 .10151E+01 .10099E+01 
30 .703E+00 -.470E-01 .470E-01 .66440E-01 .10135E+01 .10150E+01 
31 .470E+00 -.703E-01 .470E-01 .84578E-01 .10211E+01 .10191E+01 
32 .157E+00 -.798E-01 .522E-01 .95386E-01 .10203E+01 .10206E+01 
33 -.157E+00 -.522E-01 .798E-01 .95386E-01 .10203E+01 .10206E+01 
34 -.470E+00 -.470E-01 .703E-01 .84578E-01 .10211E+01 .10191E+01 
35 -.522E+00 -.157E-01 .798E-01 .81353E-01 .10186E+01 .10186E+01 
36 -.522E+00 .157E-01 .798E-01 .81353E-01 .10186E+01 .10186E+01 
37 -.470E+00 .470E-01 .703E-01 .84578E-01 .10211E+01 .10191E+01 
38 -.157E+00 .522E-01 .798E-01 .95386E-01 .10203E+01 .10206E+01 
39 .157E+00 .522E-01 .798E-01 .95386E-01 .10203E+01 .10206E+01 
40 .470E+00 .470E-01 .703E-01 .84578E-01 .10211E+01 .10191E+01 
41 .522E+00 .157E-01 .798E-01 .81353E-01 .10186E+01 .10186E+01 
42 .522E+00 -.157E-01 .798E-01 .81353E-01 .10186E+01 .10186E+01 
43 .470E+00 -.470E-01 .703E-01 .84578E-01 .10211E+01 .10191E+01 
44 .157E+00 -.522E-01 .798E-01 .95386E-01 .10203E+01 .10206E+01 
45 -.177E+00 -.177E-01 .934E-01 .95057E-01 .10210E+01 .10205E+01 
46 -.177E+00 .177E-01 .934E-01 .95057E-01 .10210E+01 .10205E+01 
47 .177E+00 .177E-01 .934E-01 .95057E-01 .10210E+01 .10205E+01 
48 .177E+00 -.177E-01 .934E-01 .95057E-01 .10210E+01 .10205E+01 
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Graph. 4:  Comparison of computed and analytical velocity distributions over the Surface of a 
Prolate spheroid using 96 boundary elements with fineness ratio 10 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Graphs 1 and 3 show the comparison of the 
computed and analytical distributions over the 
surface of a Prolate spheroid of fineness ratio 2 
for 24 and 96 boundary elements respectively. 
The graphs 2 and 4 show the comparison of the 
computed and analytical distributions over the 
surface of a Prolate spheroid of fineness ratio 
10 for 24 and 96 boundary elements 
respectively. The accuracy increases with the 
increase of number of boundary elements and 
fineness ratio. 
CONCLUSION 
 A direct boundary element method is 
applied for computing potential flow around a 
Prolate spheroid. The computed flow velocities 
obtained by this method are compared with the 
analytical solutions for flow past a Prolate 
spheroid. It is found that the computed results 
for velocity distribution are good in agreement 
with the analytical results for the body under 
consideration. 
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